Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 708
1.
Arch Pharm (Weinheim) ; 357(3): e2300537, 2024 Mar.
Article En | MEDLINE | ID: mdl-38096806

The study aimed to analyze the effects of Dendrobium polysaccharides on the cough and airway reactivity and compare them with the effects of clinically used antitussives (codeine phosphate and butamirate citrate) and bronchodilators (salbutamol), using the guinea pig test system. Dendrobium officinale polysaccharides contained proteins (4.0 wt%) and phenolic compounds (1.7 wt%) with a molecular weight of 25,000 g/mol. The sugar analysis revealed a dominance of glucose (93.7 wt%) and a lesser amount of mannose (5.1 wt%) while other sugar quantities were negligible. Methylation analysis indicated the presence of highly branched polysaccharides. Glucose was found mainly as terminal, 1,4- and 1,6-linked. Furthermore, some 1,4- and 1,6-linked glucose units were found branched at O2, O3, and O6/O4. Mannose was terminal and 1,4-linked. NMR spectra signals indicate the presence of the (1→4)-linked α-d-glucan, (1→4)-linked ß-d-glucan branched at position O6, (1→6)-linked ß-d-glucan branched at position O3 and (1→4)-linked glucomannan. Pharmacological studies showed statistically significant antitussive activity of Dendrobium polysaccharides, exceeding the effect of clinically used antitussives, which may be partially associated with confirmed bronchodilation and the ability of polysaccharides to increase the threshold of cough receptor activation. Dendrobium polysaccharides may increase the possibility of symptomatic treatment of cough, especially in asthmatics.


Antitussive Agents , Dendrobium , Animals , Guinea Pigs , Mannose/chemistry , Dendrobium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antitussive Agents/pharmacology , Structure-Activity Relationship , Polysaccharides/pharmacology , Polysaccharides/chemistry , Glucose/chemistry , Cough , Glucans
2.
J Ethnopharmacol ; 319(Pt 3): 117243, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37777025

ETHNOPHARMACOLOGICAL RELEVANCE: Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY: This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS: Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS: After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as ß-hexosaminidase (ß-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION: XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.


Antitussive Agents , Communicable Diseases , Humans , Guinea Pigs , Animals , Swine , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/drug therapy , Tryptases , RNA, Ribosomal, 16S , Inflammation Mediators , TRPV Cation Channels
3.
J Ethnopharmacol ; 319(Pt 3): 117372, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37913830

ETHNOPHARMACOLOGICAL RELEVANCE: Dioscorea bulbifera L. (Rhizoma Dioscoreae Bulbiferae; RDB) is commonly used as an expectorant and cough suppressant herb but is accompanied by severe hepatotoxicity. Using the juice of auxiliary herbs (such as Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix et Rhizoma; GRR) juice) in concocting poisonous Chinese medicine is a conventional method to reduce toxicity or increase effects. Our previous study found that concoction with GRR juice provided a detoxifying effect against the major toxic hepatotoxicity induced by RDB, but the principle for the detoxification of the concoction is unknown to date. AIM OF THE STUDY: The principle of concoction was investigated by using the processing excipient GRR juice to reduce the major toxic hepatotoxicity of RDB, and the efficacy of RDB as an expectorant and cough suppressant was enhanced. MATERIALS AND METHODS: In this study, common factors (RDB:GRR ratio, concocted temperature, and concocted time) in the concoction process were used for the preparation of each RDB concocted with GRR juice by using an orthogonal experimental design. We measured the content of the main toxic compound diosbulbin B (DB) and serum biochemical indicators and performed pathological analysis in liver tissues of mice to determine the best detoxification process of RDB concocted with GRR juice. On this basis, the biological mechanisms of target organs were detected by Western blot and enzyme-linked immunosorbent assay at the inflammation and apoptosis levels. Further, the effects of RDB on expectorant and cough suppressant with GRR juice were evaluated by the conventional tests of phenol red expectorant and concentrated ammonia-induced cough. Lastly, the major compounds in the GRR juice introduced to RDB concoction were determined. RESULTS: RDB concocted with GRR juice significantly alleviated DB content, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase levels, and improved liver pathological damages. The best detoxification process was achieved by using an RDB:GRR ratio of 100:20 at 120 °C for 20 min. Further, RDB concocted with GRR juice down-regulated the protein levels of nuclear factor kappa B (NF-κB), cyclooxygenase 2 (COX-2), and Bcl-2 related X protein (Bax) in the liver and enhanced the expectorant and cough suppressant effects of RDB. Finally, liquiritin (LQ) and glycyrrhizic acid (GA) in the GRR juice were introduced to the RDB concoction. CONCLUSION: Concoction with GRR juice not only effectively reduced the major toxic hepatotoxicity of RDB but also enhanced its main efficacy as an expectorant and cough suppressant, and that the rationale for the detoxification and/or potentiation of RDB was related to the reduction in the content of the main hepatotoxic compound, DB, the introduction of the hepatoprotective active compounds, LQ and GA, in the auxiliary GRR juice, as well as the inhibition of NF-κB/COX-2/Bax signaling-mediated inflammation and apoptosis.


Antitussive Agents , Chemical and Drug Induced Liver Injury , Dioscorea , Drugs, Chinese Herbal , Glycyrrhiza uralensis , Glycyrrhiza , Mice , Animals , Glycyrrhiza uralensis/chemistry , Expectorants , Antitussive Agents/pharmacology , Excipients , Dioscorea/chemistry , NF-kappa B , Cyclooxygenase 2 , bcl-2-Associated X Protein , Drugs, Chinese Herbal/analysis , Glycyrrhiza/chemistry , Inflammation
4.
PeerJ ; 11: e16096, 2023.
Article En | MEDLINE | ID: mdl-37901462

Various medicinal plants find their use in cough treatment, based on traditions and long-term experience. Pharmacological principles of their action, however, are much less known. Herbal drugs usually contain a mixture of potentially active compounds, which can manifest diverse effects. Expectorant or antitussive effects, which can be accompanied by others, such as anti-inflammatory or antibacterial, are probably the most important in the treatment of coughs. The aim of this review is to summarize the current state of knowledge of the effects of medicinal plants or their constituents on cough, based on reliable pharmacological studies. First, a comprehensive description of each effect is provided in order to explain the possible mechanism of action in detail. Next, the results related to individual plants and substances are summarized and critically discussed based on pharmacological in vivo and in vitro investigation.


Antitussive Agents , Plants, Medicinal , Antitussive Agents/pharmacology , Cough/drug therapy , Expectorants/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Humans
5.
ACS Chem Neurosci ; 14(12): 2256-2270, 2023 06 21.
Article En | MEDLINE | ID: mdl-37290117

Dextromethorphan (DXM) was introduced in 1958 as the first non-opioid cough suppressant and is indicated for multiple psychiatric disorders. It has been the most used over-the-counter cough suppressant since its emergence. However, individuals quickly noticed an intoxicating and psychedelic effect if they ingested large doses. DXM's antagonism at N-methyl-d-aspartate receptors (NMDAr) is thought to underly its efficacy in treating acute cough, but supratherapeutic doses mimic the activity of dissociative hallucinogens, such as phencyclidine and ketamine. In this Review we will discuss DXM's synthesis, manufacturing information, drug metabolism, pharmacology, adverse effects, recreational use, abuse potential, and its history and importance in therapy to present DXM as a true classic in chemical neuroscience.


Antitussive Agents , Hallucinogens , Ketamine , Humans , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Dextromethorphan/pharmacology , Dextromethorphan/therapeutic use , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Phencyclidine , Ketamine/pharmacology , Ketamine/therapeutic use , Receptors, N-Methyl-D-Aspartate
6.
Int J Biol Macromol ; 242(Pt 4): 125098, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37245776

Althaea officinalis Linn. (AO) is a widely distributed herbaceous plant with a long history of medicinal and food functions in Europe and Western Asia. Althaea officinalis polysaccharide (AOP), as one of the main components and a crucial bioactive substance of AO, has a variety of pharmacological activities, including antitussive, antioxidant, antibacterial, anticancer, wound healing, immunomodulatory, and infertility therapy effects. Many polysaccharides have been successfully obtained in the last five decades from AO. However, there is currently no review available concerning AOP. Considering the importance of AOP for biological study and drug discovery, the present review aims to systematically summarize the recent major studies on extraction and purification methods of polysaccharides from different AO parts (seeds, roots, leaves and flowers), as well as the characterization of their chemical structure, biological activity, structure-activity relationship, and the application of AOP in different fields. Meanwhile, the shortcomings of AOP research are further discussed in detail, and new valuable insights for future AOP research as therapeutic agents and functional foods are proposed.


Althaea , Antitussive Agents , Althaea/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Plant Extracts/pharmacology , Antitussive Agents/pharmacology
7.
Inn Med (Heidelb) ; 64(3): 288-294, 2023 Mar.
Article De | MEDLINE | ID: mdl-36703081

Coughing is an important protective reflex of the respiratory tract and primarily serves clearance of the bronchial system. It is also an exceptionally common symptom in outpatient care that can be an expression of a variety of diseases. Coughing duration of longer than 8 weeks is referred to as chronic cough. A structured, often interdisciplinary diagnostic process is essential. The aim here is to identify causal treatment options, avoiding overdiagnosis and simultaneously not overlooking severe illness. This article discusses current diagnostic procedures, important differential diagnoses and possible treatment options.


Antitussive Agents , Cough , Humans , Cough/drug therapy , Antitussive Agents/pharmacology , Respiratory System , Reflex , Chronic Disease
8.
Bioorg Med Chem Lett ; 80: 129067, 2023 01 15.
Article En | MEDLINE | ID: mdl-36395996

A novel series of α7 nicotinic acetylcholine receptor (nAChR) modulators was designed and evaluated for antitussive activity in an in vivo guinea pig model of chemically induced cough. Compound 16 at all tested doses (9.5, 3 and 1 mg/kg) significantly (p < 0.01) reduced the cumulative number of coughs and showed similar results to a positive control (codeine at 30 mg/kg). Among three different administration routes (intraperitoneal, oral and inhalation), compound 16 exerted a significant antitussive effect in guinea pigs at an inhaled dose as low as 0.4 mg/kg (p < 0.05). α7 nAChR modulators may provide a novel, non-narcotic approach to therapy in patients with acute and chronic cough.


Antitussive Agents , Receptors, Nicotinic , Animals , Guinea Pigs , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/chemically induced , Cough/drug therapy , alpha7 Nicotinic Acetylcholine Receptor , Codeine/adverse effects , Administration, Inhalation
9.
J Psychosoc Nurs Ment Health Serv ; 60(11): 9-11, 2022 Nov.
Article En | MEDLINE | ID: mdl-36317836

Dextromethorphan (DXM) has been re-purposed several times over the past 7 decades: first as a cough suppressant, then as a compounded formulation with quinidine for treatment of pseudobulbar affect, and most recently as a compounded formulation with bupro-pion for treatment of major depressive disorder. The current article describes the history and purported mechanisms of action of DXM for each use and the uniquely rapid action and safety profile of the oral dextromethorphan- bupropion antidepressant formulation. [Journal of Psychosocial Nursing and Mental Health Services, 60(11), 9-11.].


Antitussive Agents , Depressive Disorder, Major , Humans , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Dextromethorphan/pharmacology , Dextromethorphan/therapeutic use , Depressive Disorder, Major/drug therapy , Quinidine/therapeutic use , Antidepressive Agents/therapeutic use
10.
Am J Manag Care ; 28(9 Suppl): S159-S165, 2022 09.
Article En | MEDLINE | ID: mdl-36198074

Cough serves a protective physiologic function as a vital defensive reflex preventing aspiration. However, exposure to viral infections or other triggers induces, in some individuals, a chronic cough (CC) that causes a significant symptomatic burden. Most cases of CC are due to conditions that respond to appropriate therapeutic trials (upper airway cough syndrome; asthma; reflux). Unfortunately, a significant subgroup of patients will have refractory CC, which does not respond to treatment of known underlying causes of CC. Currently, available therapeutic options for refractory CC are inadequate due to limited efficacy and frequently intolerable adverse effects. Current professional society guideline recommendations are discussed, and a promising pipeline of antitussive drugs in development is introduced, including purinergic 2X3 receptor antagonists, neurokinin-1 receptor antagonists, oral mixed ĸ-opioid receptor agonists/µ-opioid receptor antagonists, and voltage-gated sodium channel blockers.


Antitussive Agents , Analgesics, Opioid/therapeutic use , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Chronic Disease , Cough/drug therapy , Cough/etiology , Humans , Narcotic Antagonists/therapeutic use , Neurokinin-1 Receptor Antagonists/therapeutic use , Receptors, Opioid/therapeutic use , Voltage-Gated Sodium Channel Blockers/therapeutic use
11.
Molecules ; 27(12)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35744861

Naringenin (NRG) is a natural compound with several biological activities; however, its bioavailability is limited owing to poor aqueous solubility. In this study, NRG nanoparticles (NPs) were prepared using the wet media milling method. To obtain NRG NPs with a small particle size and high drug-loading content, the preparation conditions, including stirring time, temperature, stirring speed, and milling media amount, were optimized. The NRG (30 mg) and D-α-tocopherol polyethylene glycol succinate (10 mg) were wet-milled in deionized water (2 mL) with 10 g of zirconia beads via stirring at 50 °C for 2 h at a stirring speed of 300 rpm. As a result, the NRG NPs, with sheet-like morphology and a diameter of approximately 182.2 nm, were successfully prepared. The NRG NPs were stable in the gastrointestinal system and were released effectively after entering the blood circulation. In vivo experiments indicated that the NRG NPs have good antitussive effects. The cough inhibition rate after the administration of the NRG NPs was 66.7%, cough frequency was three times lower, and the potential period was 1.8 times longer than that in the blank model group. In addition, the enzyme biomarkers and histological analysis results revealed that the NRG NPs can effectively regulate the inflammatory and oxidative stress response. In conclusion, the NRG NPs exhibited good oral bioavailability and promoted antitussive and anti-inflammatory effects.


Antitussive Agents , Flavanones , Nanoparticles , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/drug therapy , Flavanones/pharmacology , Flavanones/therapeutic use , Humans , Particle Size , Solubility , Water
12.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2652-2657, 2022 May.
Article Zh | MEDLINE | ID: mdl-35718483

This study determined the extraction rates of indirubin in Indigo Naturalis by ethanol reflux extraction method and water extraction method. The pharmacodynamic study against cough induced by ammonia water in the mouse model and the cough induced by citric acid in the guinea pig model were performed to optimize the extraction process of the sovereign medicinal Indigo Naturalis and the whole prescription of Children's Qingfei Zhisou Syrup. The extraction rate of indirubin by the ethanol reflux method was 51.89%, and indirubin was not detected in the product of water extraction. Two samples of Children's Qingfei Zhisou Syrup prepared with different methods can prolong the incubation period of cough and suppress the frequency of coughs in pharmacodynamic experiments. In terms of prolonging the incubation period of cough, the two samples prepared with different methods had no significant difference. In terms of reducing the frequency of coughs, the high-dose Five kinds of ethanol extracts such as indigo naturalis and three kinds of water extracts such as gypsum had better effect against the citric acid-induced cough of guinea pigs than other samples(P<0.05). The extraction rate of indirubin in Children's Qingfei Zhisou Syrup sample prepared with ethanol was higher than that with water. The two samples of Children's Qingfei Zhisou Syrup prepared with the two methods showed good antitussive effects. The sample prepared with 5 ingredients(including Indigo Naturalis) extracted with ethanol and 3 ingredients(including Gypsum Fibrosum) extracted with water had better alleviation effect on the citric acid-induced cough of guinea pig than the whole water extract sample. In conclusion, the optimum extraction scheme is ethanol extraction for 5 ingredients including Indigo Naturalis in combination with water extraction for 3 ingredients including Gypsum Fibrosum, and the Children's Qingfei Zhisou Syrup produced in this manner has better antitussive efficacy.


Antitussive Agents , Indigofera , Animals , Antitussive Agents/pharmacology , Calcium Sulfate , Citric Acid , Cough/chemically induced , Cough/drug therapy , Ethanol , Guinea Pigs , Humans , Indigo Carmine , Mice , Water
13.
J Pharm Biomed Anal ; 217: 114836, 2022 Aug 05.
Article En | MEDLINE | ID: mdl-35662013

In this study, the inter-individual variability of antitussive effect of Farfarae Flos was observed, and then the Farfarae Flos treated mice were divided into the mice with good or poor antitussive effect. Then a UHPLC-Q TOF-MS method was developed and validated to quantify 13 fecal metabolites of Farfarae Flos, and the results showed concentrated differences between the two subgroups. The results of 16 S rRNA gene sequencing analysis showed that mice with good or poor antitussive effects were also different at the structure of gut microbiota in phylum and genus, as well as the related 6 pathways. In addition, the differential fecal metabolites of Farfarae Flos between the two subgroups were probably related with 5 bacterial that participating in the CQAs and flavonoids metabolism. This study explained the inter-individual variability of the antitussive effect of Farfarae Flos from the perspective of gut microbiota. However, the specific bacterial that participate in the metabolism of Farfarae Flos as well as the antitussive effects of Farfarae Flos need to be further validated.


Antitussive Agents , Gastrointestinal Microbiome , Tussilago , Animals , Antitussive Agents/analysis , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Chromatography, High Pressure Liquid/methods , Flowers/chemistry , Mice , Tussilago/chemistry
14.
Article En | MEDLINE | ID: mdl-35245842

A new method involving gut microbiota biotransformation, spectrum-effect relationship analysis and metabolomics analysis was developed to study the antitussive and expectorant microbial metabolites of platycosides fraction (MPFs) of Platycodonis Radix. Furthermore, their possible metabolic mechanisms were studied for the first time. The findings showed that the antitussive and expectorant effects of the platycosides fraction (PF) were significantly enhanced by the gut microbiota biotransformation. 11 active antitussive microbial metabolites and 12 active expectorant microbial metabolites, which shared 8 components, were successfully screened out via spectrum-effect relationship analysis. The prototypes of the active microbial metabolites could be reversely traced according to the gut microbiota biotransformation pathways. It was found out that one platycoside could produce several active microbial metabolites and several different platycosides could produce the same active microbial metabolite. In addition, the metabolomics analysis showed that both the PF and its active microbial metabolites could regulate the same metabolomic pathways of Linoleic acid metabolism, Arachidonic acid metabolism and Glycerophospholipid metabolism to exert antitussive activity, and regulate the same metabolomic pathway of Arachidonic acid metabolism to exert expectorant activity. These findings suggested the microbial metabolites may be the active forms of the platycosides. Overall, the proposed approach was useful in screening the active microbial metabolites; this work explained the in vivo antitussive and expectorant metabolic mechanisms of multi-constituents, multi-targets and synergistic effects of PF of Platycodonis Radix.


Antitussive Agents , Expectorants , Metabolome/drug effects , Plant Extracts , Platycodon , Animals , Antitussive Agents/chemistry , Antitussive Agents/pharmacology , Chromatography, Liquid , Expectorants/chemistry , Expectorants/pharmacology , Gastrointestinal Microbiome , Metabolomics , Mice , Oleanolic Acid/analogs & derivatives , Plant Extracts/chemistry , Plant Extracts/pharmacology , Platycodon/chemistry , Saponins
15.
Respir Physiol Neurobiol ; 299: 103856, 2022 05.
Article En | MEDLINE | ID: mdl-35114369

Cough in chronic respiratory diseases is a common symptom associated with significant comorbidities including visceral pain. Available antitussive therapy still has limited efficacy. Recent advances in the understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that subtype NaV1.7 is involved in initiating cough and thus may present a promising therapeutic target for antitussive therapy. We evaluated the antitussive effect of NaV1.7 blocker PF-05089771 administered systemically and topically in awake guinea pigs using capsaicin cough challenge. Compared to vehicle, peroral or inhaled PF-05089771 administration caused about 50-60 % inhibition of cough at the doses that did not alter respiratory rate. We conclude that the NaV1.7 blocker PF-05089771 inhibits cough in a manner consistent with its electrophysiological effect on airway C-fibre nerve terminals.


Antitussive Agents , Voltage-Gated Sodium Channels , Animals , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/drug therapy , Guinea Pigs , Phenyl Ethers , Sulfonamides , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use , Voltage-Gated Sodium Channels/physiology
16.
Molecules ; 27(3)2022 Jan 24.
Article En | MEDLINE | ID: mdl-35164006

Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 µg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.


Antitussive Agents , Expectorants , Flavanones/pharmacology , Animals , Antitussive Agents/chemical synthesis , Antitussive Agents/chemistry , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Biological Availability , Cough/drug therapy , Cough/pathology , Disease Models, Animal , Drug Delivery Systems , Drug Evaluation, Preclinical , Drug Liberation , Expectorants/chemical synthesis , Expectorants/chemistry , Expectorants/pharmacology , Expectorants/therapeutic use , Flavanones/chemical synthesis , Flavanones/chemistry , Flavanones/therapeutic use , Mice , Nanoparticles , Particle Size , Solubility , Suspensions
17.
Planta Med ; 88(13): 1223-1232, 2022 Oct.
Article En | MEDLINE | ID: mdl-34715694

Cannabis sativa is a millenary medicinal plant. However, contrary to worldwide paradigm-shifting, countries like Brazil still prohibit C. sativa cultivation and its medicinal use, even though many populations use aerial parts and roots of this plant for healthcare. As such, the objective of this work was to identify substances in the samples of the C. sativa roots, tracing a correlation with antitussive and expectorant effects. Therefore, samples of C. sativa roots were donated by the Polícia Federal Brasileira, and its aqueous extract (AECsR) was prepared with subsequent lyophilization, to maintain the material stability. After that, the material was analyzed by LC-MS to observe its chemical profile. Four samples (AECsR-A, B, C, and D) were tested in animal models of citric acid-induced cough (0.4 M) and phenol red expectoration (500 mg/kg). Using LC-MS it was possible to identify 5 molecules in C. sativa roots: p-coumaroyltyramine, tetrahydrocannabinol-C4, feruoiltyramine, anhydrocanabisativine, and cannabisativine. In experimental protocols, male mice (Mus musculus) were treated with samples of AECsR at doses of 12.5, 25, or 50 mg/kg regardless of the pharmacological test. In these tests, all samples showed the potential to treat cough and promote fluid expectoration, differing only in the dose at which these effects were observed. Therefore, the data showed that the C. sativa roots of the Brazilian Northeast showed antitussive and expectorant effects, even with intense secondary metabolites' variation, which alters its potency, but not its effect. This highlights the importance of this medicinal plant for future therapy and corroborates to traditional use.


Antitussive Agents , Cannabis , Plants, Medicinal , Mice , Animals , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Expectorants/pharmacology , Expectorants/therapeutic use , Cough/chemically induced , Cough/drug therapy , Brazil , Phenolsulfonphthalein , Chromatography, Liquid , Dronabinol/therapeutic use , Tandem Mass Spectrometry , Plants, Medicinal/chemistry , Citric Acid/toxicity , Citric Acid/therapeutic use
18.
J Ethnopharmacol ; 283: 114664, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34555451

ETHNOPHARMACOLOGICAL RELEVANCE: Suhuang antitussive capsule (SH capsule), a typical traditional Chinese medicines (TCMs) compound, is widely used for the treatment of post-infectious cough (PIC) in the clinic. Our previous studies have demonstrated that SH capsule possesses significant ameliorative effects on cough variant asthma (CVA), sputum obstruction and airway remodeling. AIM OF THE STUDY: This study is designed to investigate the ameliorative effects and potential mechanisms of SH capsule on PIC in mice. MATERIALS AND METHODS: To establish the PIC model, ICR mice were induced by lipopolysaccharide (LPS) (3 mg/kg) once, followed by cigarettes smoke (CS) exposure for 30 min per day for 30 days. Mice were intragastrically (i.g.) administrated with SH capsule at the doses of 3.5, 7, 14 g/kg each day for 2 weeks since the 24th day. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA) and histological analysis were used to investigate the effects of SH capsule on PIC mice. Quantitative-polymerase chain reaction (Q-PCR) and western blotting were conducted to evaluate the levels of mRNA and proteins associated with Aryl hydrocarbon receptor (AhR)-NF-E2-related factor 2 (Nrf2) pathway. Superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity (T-AOC) assays were performed to evaluate the oxidative stress. A549 cells were used to investigate the ameliorative effects of SH capsule in vitro. RESULTS: SH capsule effectively diminished the number of coughs and extended coughs latencies in PIC mice. The airway inflammation was alleviated by decreasing the expression levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6). Moreover, SH capsule dose-dependently activated AhR-Nrf2 pathway and induced the nuclear translocation in vitro and in vivo. Besides, SH capsule significantly increased the levels of SOD, GSH and T-AOC in mice. CONCLUSION: Our study demonstrates that SH capsule ameliorates airway inflammation-associated PIC in mice through activating AhR-Nrf2 pathway and consequently alleviating inflammatory responses and oxidative stress.


Antitussive Agents/pharmacology , Cough/drug therapy , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Animals , Antitussive Agents/administration & dosage , Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Inflammation/physiopathology , Lipopolysaccharides , Male , Mice , Mice, Inbred ICR , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Receptors, Aryl Hydrocarbon/metabolism
19.
J Pharmacol Exp Ther ; 380(2): 94-103, 2022 02.
Article En | MEDLINE | ID: mdl-34782407

Studies performed in healthy smokers have documented a diminished responsiveness to tussive challenges, and several lines of experimental evidence implicate nicotine as an antitussive component in both cigarette smoke and the vapors generated by electronic cigarettes (eCigs). We set out to identify the nicotinic receptor subtype involved in the antitussive actions of nicotine and to further evaluate the potential of nicotinic receptor-selective agonists as cough-suppressing therapeutics. We confirmed an antitussive effect of nicotine in guinea pigs. We additionally observed that the alpha-4 beta-2 (α 4 ß 2)-selective agonist Tc-6683 was without effect on evoked cough responses in guinea pigs, while the α 7-selective agonist PHA 543613 dose-dependently inhibited evoked coughing. We subsequently describe the preclinical evidence in support of ATA-101, a potent and highly selective (α 7) selective nicotinic receptor agonist, as a potential candidate for antitussive therapy in humans. ATA-101, formerly known as Tc-5619, was orally bioavailable and moderately central nervous system (CNS) penetrant and dose-dependently inhibited coughing in guinea pigs evoked by citric acid and bradykinin. Comparing the effects of airway targeted administration versus systemic dosing and the effects of repeated dosing at various times prior to tussive challenge, our data suggest that the antitussive actions of ATA-101 require continued engagement of α 7 nicotinic receptors, likely in the CNS. Collectively, the data provide the preclinical rationale for α 7 nicotinic receptor engagement as a novel therapeutic strategy for cough suppression. The data also suggest that α 7 nicotinic acetylcholine receptor (nAChR) activation by nicotine may be permissive to nicotine delivery in a way that may promote addiction. SIGNIFICANCE STATEMENT: This study documents the antitussive actions of nicotine and identifies the α7 nicotinic receptor subtype as the target for nicotine during cough suppression described in humans. We additionally present evidence suggesting that ATA-101 and other α7 nicotinic receptor-selective agonists may be promising candidates for the treatment of chronic refractory cough.


Antitussive Agents/therapeutic use , Benzofurans/therapeutic use , Cough/drug therapy , Nicotinic Agonists/therapeutic use , Quinuclidines/therapeutic use , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Antitussive Agents/pharmacology , Benzofurans/pharmacology , Cough/metabolism , Guinea Pigs , Male , Nicotine/metabolism , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Quinuclidines/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists
20.
J Ethnopharmacol ; 284: 114754, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34662663

ETHNOPHARMACOLOGICAL RELEVANCE: Erigeron canadensis has been used in traditional medicine to treat a variety of respiratory diseases, including acute upper and lower respiratory tract infections and cough-related asthma. There is as yet no relevant experimental or clinical study in the scientific literature evaluating the efficacy of plants in these disorders. AIM OF THE STUDY: To investigate the active ingredients in Erigeron canadensis, a complex isolated from flowering parts of a plant was tested for airway defense reflexes, in particular for cough reflexes and airway reactivity. Both were experimentally induced by a chemical irritant that simulated the inflammatory conditions of their formation. MATERIAL AND METHODS: The polyphenolic polysaccharide-protein (PPP) complex was isolated from the flowering parts of Erigeron canadensis by hot alkaline extraction and a multi-stage purification process. The antitussive activity was confirmed as a decrease in the number of citric acid-induced coughs and the bronchodilator effect was verified as a decrease in specific airway resistance (sRaw) in conscious guinea pigs. RESULTS: The dark brown Erigeron complex with a molecular weight of 38,000 g/mol contained phenolics (13.2% wt%), proteins (16.3% wt%), and uronic acids (6.3% wt%). The neutral carbohydrate part of Erigeron consisted mainly of xylose (12.1 wt%), glucose (13.3 wt%), arabinose (24.1 wt%), and galactose (41.0 wt%) residues. Arabinogalactan and 4-OMe-glucuronoxylan have been found to be the major polysaccharides in the Erigeron complex. Using a method of chemically-induced cough reflex and guinea pigs test system the Erigeron complex exhibited statistically significant, the dose-dependent antitussive activity, which was similar to that of the centrally-acting opioid agonist codeine. CONCLUSION: Pharmacological tests have revealed a new pharmacodynamic effect of the Erigeron complex, namely an antitussive effect. Its activity was most pronounced in comparison with all previously tested compounds from other medicinal plants and approached the effect of codeine, the most potent antitussive used in clinical practice. The results provide the scientific basis for the application of this herb in traditional medicine.


Erigeron/chemistry , Polyphenols/pharmacology , Polysaccharides/pharmacology , Proteins/pharmacology , Animals , Antitussive Agents/chemistry , Antitussive Agents/isolation & purification , Antitussive Agents/pharmacology , Codeine/pharmacology , Cough/drug therapy , Dose-Response Relationship, Drug , Guinea Pigs , Male , Polyphenols/chemistry , Polyphenols/isolation & purification , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Proteins/chemistry , Proteins/isolation & purification
...